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Inductive Pulsed Plasma Thrusters



Pulsed Inductive Thruster (PIT)

PIT Mark VI :



Inductive Pulsed Plasma Thruster Operation

Idealized thruster operation :



Question: What is the Optimum Coil Geometry?
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Circuit Model of Inductive Pulsed Plasma

Acceleration
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Radial Motion Accelerates Decoupling and

Decreases Energy Transferred



Experiment



Conical Inductive Coil for Increased Propellant

Utilization Efficiency



Thruster on Thrust Stand



Double the Applied Voltage at Thruster



Experimental Results: Impulse Measurements



Impulse Bit Calculations for 20◦, 38◦, and 60◦



Impulse Bit Calculations for 38◦ operating at 3, 4,

and 5 kV



Impulse Bit Calculations for 20◦ and 38◦ operating

on xenon



Experimental Results: Time-integrated

Photographs



Varying mass flow rate of argon with 20◦



Varying mass flow rate of xenon with 20◦



Varying mass flow rate of argon with 38◦



Varying mass flow rate of argon with 38◦



Varying mass flow rate of xenon with 38◦



Time-resolved Video of xenon with 38◦



Operation at 5 Hz: Thrust Measurements



Voltage and Thrust Stand Displacement for 38◦



Thrust Calculations for 38◦



Video of 5 Hz operation with 38◦ on argon



Discussion of Experimental Results



Previous analytical results suggest radial motion is

detrimental to thrust



Previous analytical results suggest radial motion is

detrimental to thrust

Result: Intermediate angle produced highest thrust
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Questions?



Governing Equations via Kirchhoff’s Law

dI1
dt

=
LCV − LCRe I1 −MRpI2 + (LC I2 + MI1)

dM

dt
LC (L0 + LC )−M2

dI2
dt

=
M

dI1
dt

+ I1
dM

dt
− RpI2

LC

dV

dt
= − I1

C



Definition of a Radial Location

r̄ = 1/2 (rminor + Rmajor)

rcoil = 1/2 (rcoil + Rcoil)



2-D Equations Governing Current Sheet Coupling
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Circuit Eqns.
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Equations Governing Current Sheet Motion
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